
9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 1/17

2.2 - Python Basics
Our goal here is to move through an ultra-condensed version of "Computer Science 101" -- to be
good data scientists we need to have a good familiarity working with code.

Put another way, no one wants to live in a house built on a weak foundation!

Outline:

1. Arithmetic
2. Objects & Object Methods
3. Control Flow
4. Examples
5. Functions
6. String formatting

1. Let's begin with simple arithmetic.

First, we calculate some basic expressions:

In [6]:

The order of operations follows the usual PEMDAS ,
except...
It is better to say something like P E MD AS because...

Multiplication and Division are evaluated "with equal precedence" left to right

0.6666666666666665
0.16666666666666663
12
1.5
1
2

If we want Jupyter to report the output of some calculation, wrap it
in print()
print(1 + 3 - 4 * 5 / 6) # +, -, *, and / are used for standard oper

print(1 +(3 - 4)* 5 / 6) # making grouping clear with parentheses is

print(3*2**2) # exponents are denoted with **, not ^

There are three types of division (!) in Python
(and pretty much every language)
print(6/4) # usual floating point division; this gives
print(6//4) # Integer or "floor" division; round down
 # "regular" division to the nearest integer
print(6%4) # Modulus division; what is the remainder w
 # doing integer division?

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 2/17

Multiplication and Division are evaluated with equal precedence , left to right
Addition and Subtraction are evaluated "with equal precedence", left to right

Note also that exponentiation is applied "right to left", as is standard practice.

For example, 2**3**4 = 2**(3**4)

Try predicting the output of the following before you check:

4//3*4
2**8/2*2**4/2

In [7]:

Explanations for the above:

Multiplication and division (all forms) take equal precedence, so go left-to-right: 4//3 = 1 ,
then 1*4=4 .
Exponents take precedence, so we have

 2**8/2*2**4/2
= (2**8)/2*(2**4)/2 # exponents first
= 256/2*16/2 # now just left to right
= 128*16/2
= 1024

2. Evaluating "simple" mathematical expressions like this
isn't very powerful or interesting. We obtain greater
flexibility with objects.
In the simplest case, this lets us record some computations by "giving it a name":

4
1024.0

print(4//3*4)
print(2**8/2*2**4/2)

1
2

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 3/17

In [8]:

There are many types of objects. We can check what we have with the
type() command.

Try this:

In [9]:

The usefulness of storing numbers is fairly obvious; it allows you to carry out multiple computations
in sequence, carrying forward the results each time.

What are some other common types of objects in Python?

Dataframes from the pandas module. We saw last time (notes 2.01) that a dataframe
essentially contains an entire table, like an Excel spreadsheet or data pulled from a "comma
seperated values" (.csv) document.

Strings, which is just regular text, defined like so: x = "A string!" This is useful when we
want our scripts to provide meaningful output to a reader... or if we're manipulating text in the

3
9
27

<class 'int'>
<class 'float'>

A good way to read "x = <whatever>" is "x becomes"
or "x is assigned to be" whatever follows the "="

x = 3%6 # x becomes the result of 3%6
print(x)
x = 3*x # x becomes 3 multiplied by the current value of x
print(x)
x *= 3 # this is "augmented assignment" and is the same as x = 3*x
 # you can also do /=, +=, -=, etc.
print(x)

x = 3
print(type(x)) # notice this is evaluated "inside out": do type(x),
 # then print that

y = 3.0
print(type(y))

This demonstrates that Python differentiates between integers
(whole numbers) and floating point numbers (with something
after the decimal, even if it is 0)

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

10
11

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 4/17

first place!

Lists, defined with square brackets like so: x = [1,2,3] . We will use these frequently; for
example, making a scatter plot of two columns of data against one another is most simply
done with two lists of the values (e.g. x=[1,2,3] and y=[5,6,7]).

Booleans, which are logical values True and False , defined with e.g. x = True .

We'll ignore dataframes for now, but let's play a bit with the other three. Every type of object has
built in methods, which are essentially standard routines we can access directly with object dot
notation. Let's demonstrate with a silly example.

In [10]:

Let's play for a minute. Start with x = " Python is awesome " and experiment with the
following string methods:

1. x.capitalize()
2. x.lower()
3. x.isupper()
4. x.islower()
5. x.isnumeric()
6. x.isalpha()
7. x.isalnum()
8. x.count("a") (for all these, "a" just means any string)

a silly example
a
sill
A SILLY EXAMPLE
a silly example
A SILLY EXAMPLE

Create a string object
x = "a silly example"
print(x)

Spit out just one character
The index starts at 0 and increases from there
print(x[0])

Or we can do a "slice" with x[start:end]
print(x[2:6])

Use a method to make it all capitalized
print(x.upper())
print(x) # Notice that doing x.upper() doesn't change x
x = x.upper()
print(x) # But explicitly making a reassignment does!

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 5/17

9. x.find("a")
10. x.split() or x.split("a")
11. x.startswith("a")
12. x.endswith("a")
13. x.replace("a","b")
14. x.lstrip()
15. x.rstrip()

In [11]:

Generating lists
As we turn to lists, let's think first see how to create them.

In [12]:

List methods
OK, let's play with list methods. A few examples:

[' Python is ', 'wesome ']

3
[0, 1, 2, 3, 4]

x = " Python is awesome "

change the below line...
y = x.split("a")

print(y)

The first method we've already seen: be explicit
x = [1,2,3]

The "slice" notation is the same as for string
print(x[2])

Another method is to use a generator:
we specify where we start and stop
x = list(range(0,5))
print(x)

Notice that the last value is actually 4, not 5
This is to ensure there are 5-0=5 entries in the list

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9

10
11
12
13

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 6/17

In [13]:

Your turn! See what the following list methods do:

1. x.index(12)
2. x.insert(100,2)
3. y = x.pop()
4. x.remove(10)

In addition, there are some built in functions in Python that are useful when applied to lists (these
don't use the object dot notation because they're not specific to lists):

1. min(x)
2. max(x)
3. len(x)

In [27]:

[1, 2]
[3, 3, 7, 10, 12]
[12, 10, 7, 3, 3]
2

[10, 2, 3, 12, 7, 3]

x = [] # Create an empty list

x.append(1) # append an entry to the end of the list
x.append(2)
print(x)

x = [10,3,12,7,3] # A different list
x.sort() # Change it to ascending order
print(x)

x.reverse() # Flip the order (here, descending)
print(x)

print(x.count(3)) # how many entries = 3 do we have?

Let's play with the above suggestions...

Make the list
x = [10,3,12,7,3]

play with the below line
x.insert(1,2)
#y = x.pop()

print(x)
#print(y)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

10
11

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 7/17

Booleans
As a final example (for now!) of objects in Python, let's take a look at Booleans. There are just two;
True and False ; Python generates these when you present it with a logical statement. For

example:

In [15]:

True
True
False

We read this as "x is assigned to be ...
the result of the statement '5 is greater than 4',
which is True.

x = 5>4
print(x)

Python can handle different types
as long as there is a logical way to do so
print(200 == 200.0)

This one is a bit more subtle
compare the position in the alphabet of the first
characters (P,J); if they're the same check the
second, and so on, until a mismatch is found
print('Python' < 'Java')

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 8/17

Booleans are particularly useful as we move on to...

3. For anything but the simplest scripts we want to do
different things in different situations. This is so-called
"control flow"
In the simplest case, Python runs the first line of a script, then the second, all the way to the end.

What if we want to run some code conditionally? One example of so-called control flow is when
we want to do something like:

"if something is True, do this; otherwise, do that"

This is implemented with an "if/else" or "if/elif/else" statement:

In [16]:

Notice the syntax:

if <something that evalues to True or False>:
 #indented code that fires if the above statement evaluates to T
rue
else:
 #a catch-all that fires if the above statement evaluates to Fal
se

We can expand this structure with multiple checks, like so:

if x > 100:
 print("x is bigger than 100.")
elif x > 50:
 print("x is less than or equal to 100, but bigger than 50.")
else:
 print("x is less than or equal to 50.")

x is less than or equal to 100.

x = 10

if x > 100:
 # x > 100 evaluates to either True or False (a Boolean),
 # if it evals to True, we do the line indented below
 print("x is bigger than 100.")
else:
 # if the statement at the top is False, we do the below
 # line instead
 print("x is less than or equal to 100.")

1
2
3
4
5
6
7
8
9

10
11

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 9/17

We sometimes also want to give an instruction along the lines of:

"Do something to every item in some container."

(Formally, a container is an iterable, an object that can spit out its members one at a time.)

or

"Do something a certain number of times"

This is implemented with a "for loop":

In [17]:

1
2
3
4
30
0
1
2
3
4

x = [1,2,3,4]

Simple example: just output the entries
for i in x:
 print(i)

maybe we'd like to compute the sum of the squares
of the entries in the list
value = 0
for i in x:
 value += i**2

print(value)

Or if we don't want to use a pre-defined list:
for i in range(5):
 print(i)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 10/17

Finally, sometimes we want to continue a calculation multiple times, like in a for loop, but we don't
know ahead of time how many calculations we might like to do. We can instead say something like

"While some condition is True, do something

This is implemented with a "while" loop:

In [18]:

4. Examples
Phew! Let's stop and apply some of what we've done. Consider the following examples...

Example 1
You can find the maximum value in a list with max(x) . For practice, let's write our own approach:

Snag the first item and say "as far as I know, this is the biggest"; call it m.
Check the second entry. If it is larger than m, update m to be this new value.
Repeat the above step as you consider every remaining item in the list.

Check this with the following list: x = [5, 8, 120, 4]

144
1005720

Maybe we want to add up the integers squared, and
keep going until the sum is one million. What is
the last integer we add?

counter = 0
value = 0

while value < 1E6:
 # we do whatever is indented below until value < 1E6
 # becomes False.
 counter += 1
 value += counter**2

once we're done, we print out both objects
print(counter)
print(value)

We see that when we added 144**2, we exceed one million
So the last integer we'd add to -not- exceed one million
is 143.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 11/17

Example 2
Use a for loop to calculate the sum

where you stop the sum after including 20 terms in the series.

Example 3
The series from example 2 converges to as you include more and more terms. How many
terms do you need to include to come within 0.001% of this value?

To calculate percent error , use the formula

𝑣 = + + +. . .
1

2

1

4

1

8

𝑣 = 1

𝑃

𝑃 = × 100
|actual − theoretical|

theoretical

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 12/17

In [19]:

In [20]:

In [21]:

120

0.9999990463256836

17

Solutions for the examples (there are multiple ways to do these)

Example 1
x = [5,8,120,4]

m = x[0]

Look at every entry in x
for i in x:
 # Check if the one under consideration is bigger than
 # the current "biggest so far"
 if i > m:
 # If it is, update
 m = i

print
print(m)

Example 2

v = 0

i will be 1, 2, 3, ..., 20
we want to add up terms like 1/(2**i)

for i in range(1,21):
 v += 1/(2**i)

print(v)

Example 3

i = 1 # Use this to "walk across" greater terms
v = 0 # Running sum
tol = 0.001 # How close do we want to get?
P = 1 # Our percent error. Create it as something big
 # to start loop

while P > tol:
 v += 1/(2**i)
 i += 1

 P = 100*abs(v-1)/1.

We increased i inside the loop after updating v, so "de-count"
print(i-1)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
2
3
4
5
6
7
8
9

10
11
12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 13/17

5. Functions
In more complex scripts, we might want to run a certain bit of code multiple times. Defining a
function "puts the code in a drawer" and allows us to pull it out whenever we need to.

This makes code tidier (less repetition) and easier to update/debug.

Using a function conceptually involves three steps:

1. Feed in some information (i.e, provide the arguments of the function)
2. Do something with the arguments (e.g., add them)
3. Provide some information back to the main script (e.g., return the sum)

A simple example will hopefully make this clear:

In [22]:

Function Example
The binomial approximation says that if ,

You can check how good the approximation is by computing the percent difference (the left side
being exact and the right being approximate).

𝑥 ≪ 1

(1 + 𝑥 ≈ 1 + 𝑛𝑥)𝑛

9

Define the function

def f(x,y):
 # x and y are the arguments
 out = x + y
 # `return` says "provide what follows to the main script"
 return out

If we only define a function, the script doesn't do anything;
to use it we have to "call" it:
v = f(4,5)

Here, v becomes whatever is returned from the function
(here, what we called `out`)
print(v)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 14/17

Write a function that takes and as its arguments and returns the percent difference. Run it for
the following:

1. ,
2. ,
3. ,
4. ,
5. ,
6. ,

𝑥 𝑛

𝑛 = 2 𝑥 = 0.01

𝑛 = 2 𝑥 = 0.001

𝑛 = 2 𝑥 = 0.0001

𝑛 = 4 𝑥 = 0.01

𝑛 = 4 𝑥 = 0.001

𝑛 = 4 𝑥 = 0.0001

In [23]:

6. String Formatting
Thus far, when we have reported our results we have used a simple print statement, like
print(x) . For complicated programs we would like to give more nicely formatted output. We

can do thing with "string formatting".

0.00980296049406813
9.980029957012908e-05
9.99800023919745e-07
0.05804417378710545
0.0005980044915624026
5.998000439015783e-06

def check(n,x):
 exact = (1+x)**n
 approx = 1+n*x

 P = 100*abs(approx-exact)/exact

 return P

print(check(2,0.01))
print(check(2,0.001))
print(check(2,0.0001))

print(check(4,0.01))
print(check(4,0.001))
print(check(4,0.0001))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 15/17

The idea is fairly straightforward: use "curly braces" to set up a placeholder in a string, then specify

In [24]:

There are many ways to customize the way the information is formatted. Try the following and see if
you can decipher what is going on:

In [25]:

The information after the colon is in the format n1.n2 and one final character where:

n1 specifies the minimum width of the entry (useful to align multiple outputs to the console)
n2 specifies how many digits after the decimal to include

the final character, here either f or e , specifies "floating point" or "exponential" (scientific)
notation.

My favorite color is blue.
My favorite color is blue and my favorite food is PEZ.
My favorite color is blue, blue, blue! Also I like to eat PEZ.

0.18181818181818182
The result is 0.18
The result is 0.18
The result is 1.818e-01

Simple example
print("My favorite color is {}.".format("blue"))

You can have more than one placeholder:
print("My favorite color is {} and my favorite food is {}.".format("blu

You can specify which entry goes where:
print("My favorite color is {0}, {0}, {0}! Also I like to eat {1}.".for

Make some long decimal
x = 2/11
print(x)

print('The result is {0:1.2f}'.format(x))
print('The result is {0:10.2f}'.format(x))
print('The result is {0:1.3e}'.format(x))

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 16/17

Example
Go back to the previous example for the binomial approximation. "Prettify" the output.

In [26]:

For n = 2, x = 0.01, the percent error is 9.803e-03
For n = 2, x = 0.001, the percent error is 9.980e-05
For n = 2, x = 0.0001, the percent error is 9.998e-07
For n = 4, x = 0.01, the percent error is 5.804e-02
For n = 4, x = 0.001, the percent error is 5.980e-04
For n = 4, x = 0.0001, the percent error is 5.998e-06

One approach...

def check(n,x):
 exact = (1+x)**n
 approx = 1+n*x

 P = 100*abs(approx-exact)/exact

 return P

out = check(2,0.01)
print("For n = {0}, x = {1:6}, the percent error is {2:1.3e}".format(2,

out = check(2,0.001)
print("For n = {0}, x = {1:6}, the percent error is {2:1.3e}".format(2,

out = check(2,0.0001)
print("For n = {0}, x = {1:6}, the percent error is {2:1.3e}".format(2,

out = check(4,0.01)
print("For n = {0}, x = {1:6}, the percent error is {2:1.3e}".format(4,

out = check(4,0.001)
print("For n = {0}, x = {1:6}, the percent error is {2:1.3e}".format(4,

out = check(4,0.0001)
print("For n = {0}, x = {1:6}, the percent error is {2:1.3e}".format(4,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

9/19/23, 3:17 PM 2.02 - Python Basics - Jupyter Notebook

localhost:8888/notebooks/2.02 - Python Basics.ipynb 17/17

